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Abstract

Because most optimisations to achieve higher computational performance
eventually are limited, parallelism that scales is required. Parallelised hard-
ware alone is not sufficient, but software that matches the architecture is
required to gain best performance. For decades now, hardware design has
been guided by the basic design of existing software, to avoid the higher
cost to redesign the latter. In doing so, however, quite a variety of supe-
rior concepts is excluded a priori. Consequently, co-design of both hardware
and software is crucial where highest performance is the goal. For special
purpose application, this co-design is common practice. For general purpose
application, however, a precondition for usability of a computer system is an
operating system which is both comprehensive and dynamic. As no such op-
erating system has ever been designed, a sketch for a comprehensive dynamic
operating system is presented, based on a straightforward hardware architec-
ture to demonstrate how design decisions regarding software and hardware
do coexist and harmonise.
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1 Origin

To increase the performance of computers, a continual series of design im-
provements has been implemented. Since physical limits inhibit perpetual
acceleration of single processing units, deployment of multiple processing
units in parallel was adopted. There are various approaches to a generic so-
lution, the ideal being to solve as many distinct computational problems as
possible.

1.1 Performance

Computers have been invented to perform calculations automatically, and
faster than humans can do [1936kz]. Performance of computers has been in-
creased continuously ever since. Moore’s Law postulates some linear gradient
for continuously increasing complexity of integrated circuits: “The complexity
for minimum component cost has increased at a rate of roughly a factor of two
per year” [1965gm], later revised to “doubling every two years” [1975gm].
However, complexity is not performance, and integrated circuits are not com-
puters. Modern computers are made up of one or more integrated circuits,
with the basic paradigm in hardware design being unchanged since the very
beginning of digital electronic calculation machine history. The architecture
designed by J. Presper Eckert and John Mauchly [2008gh] – widely known
as von Neumann architecture [1945jn] – is still the base for most computers
today (see [1987tr], p.417): A single processing unit accesses a single main
memory to store both data and code.1

Still, in the early days, two substantially different categories of computers
have been developed. Precursors for large machines, mainframes, are military
projects for ballistic and cryptographic calculations [1973br]. In contrast,
microcontrollers have been developed to allow increasingly complex algo-
rithms in machine control units. Later, mainframes have been miniaturised,
while microcontrollers have grown more complex, and eventually both de-
velopment paths have merged, the Motorola 68000 – introduced in 1979 –
being one of the first processors powerful enough to run a work station, yet
suitable for embedded control projects.

Usually, the measure for performance is specified in basic operations per
time, e.g. MIPS2 or FLOPS (floating point operations per second), where

1The Harvard architecture (see [2011hp], appendix L) is based on seperate memory
for data and executable code. It has often been used with DSP based systems to increase
memory access throughput. Compared to von Neumann architecture, performance at most
differs in a factor of two, a constant, so it is neglected subsequently.

2The term MIPS is used in its original sense – million instructions per second – through-
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a basic operation is equivalent to the execution of some processor machine
instruction. Given ideal conditions, these processor performance values are
possibly matched by overall system performance. Ideal conditions may be
found where computers are used for highly specialised tasks, such as super
computers built for number crunching, or embedded controllers in automa-
tion.

With general purpose computers, though, things are different, as usage
conditions vary widely. Certainly, application performance for several scopes
has increased, e.g. achievable quality of animated video sequences synthesised
in real time is much higher than some fifty years ago.3 On the other hand,
for several areas, increase in application performance is much lower than
increase in processor performance over the same period of time. E.g., hyper-
text rendering carried out by a web browser takes about the same amount of
time now as it did some ten years ago, although processor performance has
increased substantially. Even worse, there are tasks that take substantially
longer on some current personal computer than the equivalent operation took
on an average late seventies home computer: While booting an Apple II com-
puter took some half second, whereof most of the time the machine spent
generating a sound, time to operational ready state (i.e. login prompt) for a
current work station may well be some half minute.

1.2 Limits

This is where May’s Law, though not quantitatively proven, turns out to
be true: “Software efficiency halves every 18 months, compensating Moore’s
Law” [2007dm1]. 4 One might argue this is polemic, but even then software
complexity and performance requirements will increase, not in implementa-
tion, but for algorithmic and quantitative reasons.

out this paper. However, MIPS as a measurement unit has often been misused, e.g. by
including heavy optimisation by the compiler into benchmark results, thus pretending
superior performance where in reality much less instructions have been executed (see
[2011hp], appendix L). But even when MIPS is calculated according to its literal mean-
ing, counting the instructions executed per time, instructions differ widely in their func-
tionality from one processor design to another, so two processors with equal MIPS rate
may differ substantially in the performance they deliver. Even with all these considerations
taken into account, the MIPS rate is merely a theoretical upper bound, as administrative
tasks will consume part of the available performance, and for generic applications it is rare
to exactly match the basic design of a computer system.

3The first computer animated motion picture ever has been synthesised on the soviet
BЗSM-4 in 1968: http://www.etudes.ru/ru/mov/kittie

4Actually this observation is not new, it is known as Jevons’ paradox: “economy of fuel
leads to a great increase of consumption”, and “an improvement of the [steam-] engine,
when effected, will only accelerate anew the consumption of coal” [1866wj]
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figure 1: core clock input frequency 5

As long as the basic architecture of computers is not changed, continuously
growing application performance needs can be compensated by increasing
processor and memory performance.

Unfortunately, there are physical limits: “Because information cannot travel
faster than the speed of light, the only ways of performing a computation more
quickly are to reduce the distance information has to travel, or to move more
bits of information at once. Attempts to reduce distance are eventually limited
by quantum mechanics” (see [1991tw], p.5). Moving more bits at once in a
single memory computer increases the amount of die area needed for data bus
connections, thus further limiting the extent of functionality. Not only is there
a minimum size for structures to work, but also a lower limit for production
of these structures, though new lithographic processes are able to push this
limit further. Thermal dissipation is a problem, where energy consumption
is concentrated in circuitry of descreased size. These limits processor indus-
try has approached around 2003 (see [2011pm], p.3f). Limits to processing
speed are reflected by stagnation of previously increasing core clock frequen-
cies, see figure 1. However, an improved version of a processor with a faster
core clock frequency does not necessarily indicate increased performance, as
the same operation may need more clock cycles to complete than with the
previous design, e.g. along a pipeline. Dividing the clock frequency by the

5The figures are made up of the characteristic values of various different architectures
and processors, including Intel 4004 and 8086, Motorola 68020, IBM POWER6+, Freescale
iMX6, ARM Cortex-A7, Intel XEON Phi 7290, and Samsung Exynos 8895.
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pipeline length reveals the true technical limit to completely perform a sin-
gle operation, see figure 2. The thermal dissipation limits have been reached
around 2005 (see [1996hv], p.55). The limit in structure size ultraviolet
light based production has reached around 2012, using 32nm lithography
technique, see figure 3. Further reduction in structure size may be possible
through advanced technologies, e.g. extreme ultraviolet (EUV) lithography
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figure 3: most advanced lithographic technology in use 5
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[1998jb][2014bg]. Eventually, these limits prevent further increasing core
performance, see figure 4.

1.3 Transparent Structural Optimisation

Additionally, up to this point, various transparent structural optimisations
have been applied, none of which yields more than a fixed ratio improvement:

• Optimised instruction set encoding, shorten instruction words either
generally (e.g. byte code) or for frequently used instructions (e.g. Xtensa,
XMOS) to reduce memory access load. However, shorter instructions
will encode less functionality and thus on average will result in longer
instruction sequences.

• The opposite approach to optimising the instruction set encoding is to
use long instruction words (VLIW) encoding multiple operations per
word, which at runtime are executed in parallel [1983jf]. However,
VLIW processors are not transparent from the point of view of the
compiler, as it has to anticipate instruction scheduling to exploit the
processors inherent parallelism.

• Simplified specialised processing units (e.g. DSP, DMA), using less cir-
cuitry for a task, results in faster instruction execution.

• Complex specialised processing units (e.g. FPU, GPU), accelerate dis-
tinct computations through higher degree of hard wired integration.
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• Instruction pipelining, splits up a single instruction execution into se-
quential stages, so different stages of successive instructions can be
handled simultaneously. This way, it may happen that two subsequent
instructions are executed at the same time, though not at the same
stage of execution, with dependencies between these two instruction,
e.g. the second instruction needs the result of the previous one as an
input, before the result is readily available. A common solution for this
hazard is to block execution of the second instruction (e.g. on Intel
i860 [1992in]), or more advanced, to add short cut circuitry for all
possible constellations of instruction sequences to provide the following
instruction with the needed input as fast as possible [2007hh]. An-
other solution is to give up transparency, an early example being the
Berkeley RISC processor [1981ps] that defines delay slots for branch
instructions causing the program counter to be updated only after the
next instruction following the branch instruction. Transparency is also
partially given up on Intel i860 [1992in], where a floating point cal-
culation is initiated by one instruction, but the result being ready at
the end of the three stage floating point pipeline is stored into the
destination register given by the third next instruction.

Specialised processing units and vectorised instructions are special cases
of an enhanced instruction sets. More general approaches include the use of
programmable gate arrays to provide configurable hardwired, and thus fast
operations – e.g. the instruction set extension fabric (ISEF) on the Stretch
Inc S6000 processor [2012hm].

1.4 Vector Processing

To achieve higher data processing rates, multiple data sets may be pro-
cessed in parallel. Either a single instruction sequence is performed on all
the data sets synchronously, which is called the single instruction multi-
ple data (SIMD) approach, or each data set is handled independently from
each other by a distinct process, called the multiple instruction multiple data
(MIMD) approach, according to Flynn’s taxonomy6 [1972mf]. What Flynn

6Flynn’s paper is about effectiveness of different computer designs at that time, and
what has been adopted as his taxonomy is only a fraction of some classification described.
As a sequel, other authors state that Flynn’s “classification scheme ... is too broad”, it is “a
classification scheme by broad function rather than a classification of the design” [1988hj].
Next to introducing “Shore’s taxonomy” which subdivides only the SIMD architectures
into different classes – and thus is equally incomplete – they propose “an algebraic-style
structural notation, formalising the functional units” [1988hj]
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called MIMD is equivalent more or less to what today is known as SMP (see
section 1.6). Additional architectures have emerged since, see table 5.

MIMD NUMA
SISD SIMD SMP DSM NoRMA

execution units 1 n

control units (cores) 1 n

memory units 1 n

address spaces (nodes) 1 n

table 5: Computer architectures gross classification

With vector processing, each data set is an array of data words, the max-
imum length of the array defined by the hardware vector size. Vectorised
instructions perform the same operation on each single word in a vector,
where implementations differ in whether words are processed simultaneously
in an array of execution units, or one after the other in a pipelined execu-
tion unit. SIMD essentially is equivalent to vector processing (see [1987wg],
p.322), even for machines that are constructed differently, e.g. the Connec-
tion Machine [1985dh]. “SIMD are very good at some things, but inefficient
at others” (see [1991tw], p.7), because the design is suitable only for algo-
rithms that work on multiple data sets synchronously in parallel using the
same identical instruction sequence for each of these sets. Under optimum
circumstances, this method does scale up to the size of the vector, but for
general purpose applications, this is rarely achieved, because only a limited
category of algorithms lends itself to vectorisation.

1.5 Asymmetric Multiprocessing

Further, various asymmetric multiprocessing solutions are used widely –
though most of them usually are not referred to as such – providing aux-
iliary processors for specialised tasks:

• direct memory access (DMA), an address driven data movement pro-
cessor (e.g. Zilog Z8410 DMA controller [2001zi])

• floating point unit (FPU), and graphics processing unit (GPU), exam-
ples for complex special purpose coprocessors

• digital signal processor (DSP), occasionally additionally available on-
chip (e.g. Texas Instruments OMAP L138 [2009ti])
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• other specialised coprocessors, e.g. the Cell BE featuring eight “syner-
gistic processing elements” [2005cr]

• peripheral control units, to handle various peripheral interfaces, occa-
sionally even microcode programmable (e.g. PRU on Texas Instruments
OMAP L138 [2009ti])

1.6 Symmetric Multicore

About the same time industry reached the limits in structure size reduc-
tion, development of multicore processors started to fill the gap, with the
POWER4 by IBM being “the first non-embedded [multicore] microprocessor”
commercially available around 2001 [2011cs]: Multiple processing units si-
multaneously execute instruction streams one each. In 2004, Intel stopped
single core development in favour of multicore [2004lf].

Designed for symmetric multiprocessing (SMP), the computer is now ca-
pable of independently executing multiple instruction sequences in parallel.
However, all the processing units still access one single main shared memory,
and thus constitute a single node. “Shared memory tends to become the gov-
erning system bottleneck in cases where it happens that many processors try
to access the same memory at the same time” (see [1987wg], p.323). There
are strategies to reduce this problem, large local cache memories being the
most common, and mandatory to reduce access to main memory itself (see
[2007hv], p.22), see figure 6. But with the number of cores growing further
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figure 6: 32/64bit CPU caches size (1st, 2nd, and 3rd level) 5
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memory communication will increase further, too. 7

Besides, shared memory needs synchronisation methods to resolve resource
access conflicts, e.g. locking through semaphores, or transactional memory.
Both increase system complexity, and do not scale [2014yb].

To optimise die area utilisation, cores may share some of their units, e.g.
the execution unit, to improve the benefit from its stages at all times.8 Apart
from timing differences they cause, shared execution units are transparent to
software.

1.7 Multinode Computer

Single node computers are inherently ineffective: “Almost none of its billion
or so transistors do any usefull processing at any given instant” because
most “transistors are in the memory section of the machine, and only a few
of those memory locations are accessed at any given time”, and “the bigger
we build machines, the worse it gets” (see [1985dh], p.4).

A measure for this imbalance is given by the capacity access time ratio,
which is the quotient from available storage capacity in a system and the
average access time to it, a value that has increased – and thus worsened –
by a factor of ten in less than a decade ever since 1950, see table 7.

year 1950 1965 1980 2000
bit/s 107 109 1011 1013

table 7: capacity access time ratio, according to [2007hv], p.22

Whereas the multicore approach increases the ratio of processing capacity
against amount of memory, it does not solve the memory bottleneck issue,
rendering the improved ratio largely useless.

Attempts are made to circumvent the single bottleneck by splitting the
shared memory into sections, distributed shared memory (DSM), providing
multiple, separate busses from the cores to memory [2002cl]. In theory, and
for special applications, this approach might mitigate the bottleneck, but not

7Actually, cache memory has been introduced prior to the advent of multicore systems:
Clock rates for CPUs have doubled about every two years, while access rates for DRAM
have doubled about every six years. Around 1985, rates have been equal, but the discrep-
ancy doubles every three years since (see [2007hv], p.20). With multicore systems, the
problem is just worse.

8While Intel calls this feature hyperthreading, other manufacturers call it simultaneous
multithreading. It is equivalent to the skeleton processor concept as described by Flynn
(see [1972mf], p.958)
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only introduces it quadratic cost in interconnection9, it also hides the memory
topology from the software: Initially this might seem an advantage, because
it relieves software development from being concerned with hardware details,
but for generic applications it is ineffective, as it is not trivial for an operating
system to optimally allocate memory sections by predicting access patterns.
Research on how to further optimise allocation largely concludes that user
applications need to support the operating system here [2008bc]. However,
then allocation is transparent to the application and there is no good reason
to not let the application completely assume control of data flow.

Provided no other transparent structural optimisations or local parallelism
approaches are invented, to overcome the memory bottleneck, one will even-
tually have to give up shared memory, i.e. the single node multicore ap-
proach, and handle communication among processing units explicitely. With
the multinode approach, memory is split up into portions per core, where
each core has access to its local memory only, and data exchange from one
core to another is handled explicitely using communication channels directly.

A number of systems have been designed according to the multinode ap-
proach, namely Transputer based systems, for an overview see [1991tw],
p.8f , and p.354f . Each of the multiple nodes usually follows the basic von
Neumann architecture design concept (see [1987bv], p.4). There has been
discussion on which topology to choose to connect the nodes [1987wg], until
Inmos announced a packet switching based design to overcome the restric-
tions of hardwired networks (see [1991tw], p.157).

Therefore, software design has to switch from memory based data structure
algorithms to channel based data streaming algorithms. Where application
software is manually tailored to fit the hardware, i.e. with special purpose
computing, this is already largely the case, and for many problems, suitable
parallel algorithms are obvious, such as searching and sorting [1988gr].

While being fundamental in super computing since 1972 [1972bd], appar-
ently there is need for explicit parallel implementations of average applica-
tions, too: Originally designed to fulfil specific graphics computation tasks,
graphics processing units (GPU) today are used to implement computation-
ally intensive parts in scientific algorithms [2004fm][2006dd][2015mv].

For various problems, however, such as system operation or code compila-
tion, parallel implementation may not seem straightforward initially. To best
facilitate software implementation, “a general-purpose concurrent computer
must provide a simple way for programs to be mapped on to the physical archi-

9The quadratic cost is worst case, and for the multinode approach it is the same, but
it is transparent, i.e. topology handling to avoid access jam is not done by guesswork at
operating system level, but explicitely at application level – and thereby potentially much
more efficient.
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tecture of the computer”, and “this mapping must be achieved automatically
if portable software packages are to be written” (D. May, in [1989eh], p.54).
The complexity of this automatic mapping will directly correlate to the com-
plexity of the entire system design, which thereby causes the algorithms that
are needed to fulfil this mapping to be equally complex. This implies directly
the need to keep the overall system design as simple as possible.

However, it does not imply to hide the overall system design from the ap-
plication: For an application to benefit from a multinode design it would be
counterproductive to assume a different design and let some underlying soft-
ware layer translate access to resources as needed. It definitely is no good idea
to simply apply existing programming models to a fairly different system de-
sign with least possible adaptions [2006el]. It is obvious that algorithms for
a multinode design will look different from those for single node computers,
so porting tools to multinode computers essentially means rewriting them.
Without doubt, this will be expensive, and maybe this explains why “we are
still some way from having good standard toolsets [...] on parallel computers”
(see [1991tw], p.355). Without system software research responding to fun-
damental progress in computer architecture, though, this progress will be of
little value [2000rp].

2 Review

The predominating approach for concurrent computing today, shared mem-
ory SMP, usually comprises a set of features to optimise performance. These
features need to be reviewed for usefulness with the multinode approach.

2.1 Shared Memory

In a system with multiple nodes there is no need to support multiple cores per
node additionally on top of it, because the scheme for inter-node communica-
tion implicitely serves for inter-core communication as well. Shared memory
– an extra scheme for inter-core communication – would unnecessarily intro-
duce additional complexity, so it can be avoided altogether, resulting in a
design with only one core per node, the local memory model. When a large
number of nodes is provided, then the amount of memory per node may
be proportionally smaller, as more nodes may contribute to the algorithmic
needs of some application.
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2.2 Cache

Introduction of cache memory did help to reduce the negative impact of
the CPU-to-memory-gap, that emerged around 1985, when CPU frequen-
cies increasingly exceeded DRAM memory access frequencies (see [2007hv],
p.20f). This gap already exceeds a ratio of 1:100 long since (see [2008bc],
p.3).

As long as the combined memory, consisting of a slow memory and a
cache, is transparent to the core that accesses it, using a cache does not
cause harm. This is almost always true for transparently addressing data,
but unfortunately it is not true for the timing behaviour of the combined
memory. This may not be a problem for some applications, but as soon as
timing is an issue, the use of cache memory spoils determinism.

In the latter case it might be preferable to deliberately distinguish be-
tween direct access to fast local memory on the one side, and explicitely
accessing larger amounts of slow memory on the other side. This way DRAM
is no longer the main implicitely addressed memory resource, but fast local
memory is. DRAM, if needed at all, may be an external resource, access to
it handled by a dedicated process, and consequently cache synchronisation,
bus snooping, and the like are not a topic anymore.

2.3 Synchronisation

As long as different processes are allowed to access common resources si-
multaneously, some means of synchronisation needs to be in place to avoid
conflicts such as race conditions.

Without shared memory, however, the only common resources available are
distinct processes, access to which is available through channel communica-
tion, which in turn provides implicit synchronisation. As a result, no further
locking mechanisms need to be implemented at all, neither in software nor
in hardware. This includes schemes like semaphores (see [2001ed]) as well
as transactional memory.

For any external resource, one single process shall be responsible for all
access to it. This way synchronising access to it is reduced to synchronisation
in channel communication, which again is implicit.

2.4 Time-Shared Multitasking

On systems with only one or a low number of cores, execution of multiple
processes is performed by means of time-shared scheduling, using a single
processing unit to run multiple processes, usually alternating in a time-sliced
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manner. Virtual addressing is used to both avoid memory fragmentation
and address conflicts, and to pretend to supply more random access memory
than actually is available. With message passing parallel computers, the need
for time-shared scheduling is not evident, as long as there are enough cores
to provide each process with one core. Otherwise, stale processes could be
swapped out in much the same way as memory portions of idle processes on
a single node multitasking machine are swapped out to disk.

With enough cores to provide one dedicated core for each process in the
system, there is no need to share cores among processes. Consequently, sup-
port for time-shared multitasking is not needed. It is abandoned altogether
in favour of dedicated core usage.

2.5 Interrupts

Usually, interrupts are used to handle external events asynchronously on a
core engaged otherwise. This is necessary where the core is not fast enough to
handle the events through busy polling on a machine that does not provide
a single dedicated core for each single event, or for a group of related events
(see [2001ed], p.28). The concept of interrupts had been introduced in 1957,
and it was immediately obvious it would wreck the processors deterministic
behaviour [2001ed]. On a machine with cores enough to provide one for
each group of events, and supposed these cores are fast enough, there is no
need to disrupt an executing process to handle external events.

To minimise latency from event occurence to its handling, a wait instruc-
tion is introduced, that allows the sequential execution of instructions to stall
until an event – out of a set of previously configured events for this occassion
– occurs (see [2010dm], p.25).

Note, that it is essential that the wait instruction is capable of waiting for
a set of events, not just a single event. Since the core that handles the event
is dedicated to exactly this task, stalling the executing of instructions does
not obstruct any other task.

This way, the concept of interrupts is no longer needed. As a result, since
“the interrupt mechanism turned the computer into a nondeterministic ma-
chine with a nonreproducible behaviour” (see [2001ed], p.13), to abstain
from it means to regain determinism.

2.6 Exceptions

Exceptions are used in an otherwise sequential thread of instructions to han-
dle – as the name says – exceptional situations. This may be a special result
of an instruction, e.g. division by zero. However, with instructions always
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returning useful results no matter what the parameters were, exceptions can
be made superfluous. The division instruction for example might take divi-
dend and divisor, and return division result and remainder and additionally
some flag. Alternatively, the division instruction might be implemented as
some kind of branch instruction, that branches on zero divisor. Or it may
simply return an undefined result on zero divisor, assuming that case has
been handled explicitely prior to division.

For channels that shall handle packetized data, i.e. besides ordinary data
words software needs to transmit and detect control tokens – e.g. end-of-
packet token as used with SpaceWire [2008es] – reception of the right type
of token may be anticipated either by a special instruction, or by an additional
configuration option to the wait instruction: Wait for either type of token,
then jumping to different locations depending on the token type.

Non predictable or fatal exceptions (e.g. bus fault) might cause an ex-
ception message be sent to an exception handler, which is another process
(identified by its port number). The former process may simply be stopped,
asking for external activity to handle the exceptional situation.

Eventually, with no time-shared multitasking, no interrupts, and no excep-
tions disrupting the control flow of a process, context switches are superfluous
altogether – except for the start of a new process that needs an initial con-
text setup. To go without context switches not only simplifies overall system
design, but also saves significant runtime cost where register files would have
to be stored and loaded, and cache tables flushed to avoid security flaws (see
e.g. [2018si]).

2.7 Privileged Mode

No context switches also means no context changes: A process started in
non-privileged mode can never gain privileges: There are no syscalls.

The only way for a non-priviliged process to have a privileged task done
is to send a message to a privileged process and ask it to perform the task.
Possibly, that latter process needs to check the authorisation of the originator
to decide. The authority information plaited into the originating port number
could solve the problem: The most simple case is a bit in the port number
indicating a privileged process sending from it.

2.8 Peripheral I/O

Peripheral I/O modules may be looked at as auxiliary specialised processors
– either hardwired or programmable. Where the core is fast enough to handle
a peripheral interface directly accessible through GPIO lines, there is no need
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for another dedicated peripheral interface controller. Latency is reduced using
the wait instruction, to allow for immediate response upon occurence of an
event [2009mm]. There is no need for extensive peripheral circuitry, except
for just a few configurable shift registers. Moreover, driver software is freed
from the burden to handle complex – and often obscure – subsystems, as it
now has direct access to the transmission lines. This type of direct interface
handling is good for a large variety of interface types, including high speed
data transfer interfaces, it has proven to cope with e.g. a 100 Mbit ethernet
PHY on a 50 MIPS core [2012sb].

2.9 Asymmetric Multiprocessing

Specialised processors increase the performance for special use cases, usu-
ally executing in parallel to a conventional general purpose CPU. This is
asymmetric multiprocessing, and for each specialised processor in a computer
special software needs to be written. To decrease overall system complexity
and cost, specialised processors shall be abandoned in favour of standard
processors (see [2007dm2], p.10).

In a system with a single core per node and small local memory, there is not
much use for DMA, because most larger data movements take place on inter-
node channels. For other examples – DSP, FPU, GPU – the main difference
to a standard processor are specialised instructions, commonly floating point
or other complex arithmetic. It is not axiomatic to avoid instructions that
support special operations, but by not restricting these to separate processing
units, the overall system design can be kept symmetric.

2.10 Virtual Memory

Shared memory accessed by multiple processes using absolute addressing
modes at instruction level requires virtual address translation to avoid both
allocation fragmentation and address space conflicts.

However, these problems are not an issue on a system consisting of large
numbers of cores with no shared memory, each with its own small portion of
local memory instead. Memory allocation is process local: A core and its local
memory are an indivisible unit, and from the system point of view memory
is not allocated, but cores are.

It may be desirable though to swap processes to optimise locality in com-
munication at runtime (see [1985dh], p.133f). Hardware support for virtual
channel addresses may prove a useful feature in this context – i.e. determin-
ing and storing channel numbers at run time [2013os]. Furthermore, when
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resources are scarce – i.e. the system is out of cores, much like a shared mem-
ory system is out of memory – using a virtual channel address scheme makes
it possible to stall and swap out processes rather than memory pages, even-
tually providing virtual resources in much the same way as with a virtual
address space that is larger than the physical one.

Thus, simple flat memory process administration per node will be suffi-
cient.

Still, multithreading may be implemented to a limited extent to increase
flexibility in resource usage, which is similar to multiple cores sharing single
stages of the execution pipeline by passing access to the stages around, thus
avoiding stages to sit idle [2009mm]. To cope with memory fragmentation in
this environment, an instruction set restricted to relative addressing is used,
with all addresses relative to a set of base pointers, e.g. instruction pointer,
constant pool pointer, data pool pointer. Avoiding absolute addressing alto-
gether makes process memory relocation a rather simple task.

2.11 Power Management

Power management refers to two different domains: Internal power manage-
ment, i.e. the core itself changing to a state of reduced power consumption,
and peripheral power management, where peripheral interface controller cir-
cuitry is partially or completely switched off when not in use.

The latter is a topic only for external additional hardware, as internally
there are no peripheral interface controller blocks. Switching off external
circuits may well be left to explicit handling through driver software.

Internal power management consists solely in reduced clock frequency
modes and thus reduced power consumption for a core, that is stuck in a
wait instruction [2009mm]. As this state is entered automatically, there is no
need for the software to take further action: Power management is implicit.

2.12 Cost

Though not strictly necessary, it might be desirable to have available some
of the above mentioned features, as they might simplify handling the ma-
chine. However, by omitting unnecessary features the die area needed for the
implementation of a single core is reduced, thereby increasing the potential
number of cores per chip.

Another motivation to simplify the hardware design is software engineer-
ing cost: specialised circuitry needs dedicated software drivers, and additional
hardware features need to be handled by software, even where they are in-
tended to simplify overall system design. Even worse, different features may
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coincide, e.g. power management must be implemented again with every
single peripheral driver, multiplying the extra cost for both features. As a
consequence, potentially, “as the number of capabilities added to a program
increases, the complexity of the program increases exponentially” [1970cm].
Replacing complex dedicated peripheral circuitry by direct access to the
transmission lines may reduce cost in driver development substantially.10

Simplicity in software design is not only good to save cost, but also “for
reliability simplicity is an absolute prerequisite” [1975ed]. Likewise, for se-
curity reliability is an absolute prerequisite. It is known that the number of
bugs in large software systems directly relates to the size of the software (see
[1979yc], p.370). On a shared memory computer, all system software on the
single node adds up, yielding much higher complexity than programs on iso-
lated nodes would do, hence “programming of a system in which the program-
mer has explicit view of memory is much more complicated and error-prone
than the programming of message based systems” (see [1987wg], p.323). Con-
sequently, to support software reliability, it is inevitable to keep the hardware
design as simple as possible.

Moreover, choosing the most simple basic hardware design improves soft-
ware portability, simply by reducing the number of features and special cases
that would need to be handled porting the software. As “the successful ex-
ploitation of concurrent computers now depends more upon achieving soft-
ware portability than upon any other single factor” (D. May, in [1989eh],
p.54), simplicity is crucial for the success of any basic system design [1970cm],
just like “a key property of the von Neumann architecture for sequential com-
puters is efficient universality” [1989lv].

3 Feasibility

How should a simple multinode design look like? What are its dimensions,
and how does its order of magnitude relate to feasibility?

3.1 Sketch

From the collection of considerations it can be concluded, that three basic
conditions hold for the design of an improved hardware architecture:

For one, to overcome the active silicon imbalance [1985dh], it must provide
as many processing units as possible. Because a SIMD architecture does not

10E.g, the XMOS ethernet driver of 400 lines of code compared to a Linux kernel Intel
e100 driver of 3200 lines of code – both written in C.
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match arbitrary algorithms, and because the shared memory approach does
not scale, it must be a message-passing multinode architecture.

Further, the design of the individual processing units, the cores, must be
as simple as possible. In reducing their size in hardware implementation the
highest possible number of cores will be available per chip. Furthermore,
reduced complexity decreases cost for software development, maintenance,
and portability [1996ed].

Lastly, the software used with it will “dynamically allocate and deallocate
processors in the same way that a sequential program dynamically allocates
and deallocates memory” [1989dm]. Because “dynamic allocation requires
coarse grain parallelism” [1989dm], instruction wise forking and synchro-
nising execution is not suitable. Instead, parallelising algorithms into sepa-
rate processes matches the concept of allocatable cores, demanding channel
based message passing. This essentially is communicating sequential processes
[1978ch].

Because software will allocate processing units instead of just memory,
thus starting processes, a program consists of an arbitrary, possibly variable
or even unbound number of processes. This is analogous to a single node
computer program allocating memory pages at will. As a consequence, the
individual processes cannot allocate more memory at runtime, but have their
static amount of memory assigned at process start time, together with the
core to run on. Processes that need to allocate memory dynamically will have
to allocate cores instead, running supportive processes, which in turn may or
may not provide more functionality than just additional memory. This way,
memory is not some passive resource, it is active memory. For implementation
reasons, the amount of local memory the process has available, will be quite
limited – to avoid undermining memory locality – but not necessarily fixed
to some system wide constant value.

To achieve variable local memory size a region of common local memory
may be shared among a set of processing units. This solution is implemented
in XMOS XS1 [2007dm2], but it reintroduces all the disadvantages of shared
memory. To reduce impact on software reliability, an MPU may be added to
prevent access of one process to the memory section reserved to another
process. E.g., the Null Operand Parallel processor implements implicit range
checks to trap memory access violations [2016os1]. An advanced solution
would be an MMU to assign the required number of memory blocks to a pro-
cess at startup time. In conjunction with an externally driven (e.g. through
the interconnect) process startup circuitry, it renders local software to control
memory assignment superfluous (see section 6.2).

While instruction pipelining applied to a single core introduces either
wastage or hazards, this is not the case where the execution pipeline is shared
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among several cores, each of the cores using only one stage of the pipeline at
a given time. To sustain reliable process response time – and thus not loose
the ability to handle port based peripherals – timing with the shared execu-
tion pipeline must be predictable, e.g. by using a deterministic round robin
scheduler. The XMOS XS1 implements this restricted variety of a hazard free
shared execution pipeline. Combined with fully hardware controlled mem-
ory assignment, the aspect of sharing memory and computational resources
among multiple processes is no longer visible to software at all, eliminating
any need for software supported resource conflict management.

Besides “many processors” the second basic requirement is “programmable
connections” (see [1985dh], p.14f), as without programmable connections
“the algorithm is designed to suit a particular configuration. This is satisfac-
tory for embedded applications, where the configuration can be determined by
the application. It is obviously unsatisfactory for a general-purpose computer”
(D. May, in [1989eh], p.54). This requirement is easily met by programmable
interconnects as found e.g. on XMOS XS1 processor chips [2009mm].

3.2 Size

The size of the execution unit that will be used in a parallel system design
is as yet unknown, because no dedicated solution has been implemented in
hardware so far. To obtain an estimation, numbers available for compara-
ble designs are investigated, see table 8. Further it is assumed that for the
execution pipeline a simple design of four stages is chosen, and that only a
fraction of all resources will ever be active. Following this consideration, it is
acceptable to plan one execution unit to be shared amoung eight processing
units each.

design transistors logic cells local memory bits
J1a [2015jb] 1200 64k

Motorola 68000 68k -
Inmos T800 300k 32k

(OpenSPARC T1) [2013mf] 285k 192k

table 8: compact microprocessors key figures

Deduced from these numbers, it is assumed that a suitable processor, in-
cluding execution pipeline, register banks, interconnect, and control logic,
designed for shared use with eight processing units, will require no more
than one million transistors. It is further assumed that a major portion of
these transistors represents storage facilities, like register banks or routing
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tables, so half of it may be replaced by block RAM in an FPGA based im-
plementation. To further simplify the estimation, 15 transistors are taken
as an equivalent of one logic cell (see [1992bf], p.22). Assuming all local
memory is CMOS SRAM, requiring 6 transistors per bit, plus fringe elec-
tronics, subsequent estimation is based on 8 transistors per bit in total. It
is undisputed, that these assumption are very vague and suitable only for a
rough feasibility estimation, particularly, because the number of transistors
alone does not linearly correspond to the die area the design would need, as
is explained comprehensively in [1989dm].

Recent advances in microprocessor manufacturing have shown it possible to
cram 4 billion transistors onto a single processor chip [2016bb], see figure 9.
While this may serve for an estimation of what can be achieved in theory, for
an estimation concerning some early hardware prototype the characteristics
of the largest currently available FPGA are taken as a basis: The Xilinx
Virtex-7 XC7V2000T offers some 1954k logic cells and 46512kbit of block
RAM [2017xi]. Based on these numbers, figure 10 shows a rough estimate
for the number of cores that might fit on one chip, as a function of the size
of local memory per core.

Further limits, like heat dissipation or needed number of pinout, have not
been considered so far.
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4 Operation

Cultivation of multinode computers for general purpose use, i.e. to run a
wide variety of applications on it, asks for abstraction to a degree so as
to relieve application software programming of considering hardware details
in too much depth. The overall multinode design should not be hidden from
the application, but quantitative characteristics should – like number of cores
available, or the underlying network topology.

4.1 Abstraction and Management

An operating system is defined to be some basic software executing on a com-
puter, providing arbitrary application software with resource management,
and ideally with full hardware abstraction [2009sg]. This operating system
turns the specific hardware implementation into a general purpose computer
system, and allows to design application software in a hardware independent
way.

Hardware abstraction is meant to standardise access to peripheral devices.
Hardware abstraction in the sense of portability to a different type of com-
puter is not the task of the operating system but largely the task of compiler
tools. When coping with parallel computers, the question of how to organise
parallelism is independent of peripheral devices, so the latter may be left out
of the operating systems kernel part. Nevertheless, peripheral devices need
to be controlled, so a set of processes for this purpose may be considered part
of the operating system.
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Resource management is to fulfil an applications demand for processing
capacity and memory space, and this is where parallel properties of a system
inherently determine the algorithms to use.

As already described in [2013os], on a single node computer, system
global memory is the main resource to administer, and it usually is portioned
in memory pages, see figure 11.

On a multinode system with a single core per node however, the process-
ing units are the main resource, i.e. the cores, which constitute computing
capacity together with local memory, see figure 12. Allocating dynamically
these units instead of bare memory has been suggested earlier: “processing
resources ... be allocated and deallocated as freely as memory” [1989dm].

The part of the operating system controlling processing capacity usually
is called the scheduler. There are two purposes it may serve: One is arbitrary
process launch, i.e. starting the execution of a random new process at system
runtime. The other purpose is multitasking, i.e. controlling the execution of
multiple processes at the same time. Not all operating systems do serve both
purposes. On large computer systems in the 1960-80s common practice was
batch control: There was no multitasking, but full processing capacity was
allocated to a single process, and the next one would be started only when
the previous had finished executing [1974as]. In embedded control, static
schedulers are quite common, that do not support arbitrary process launch.

On computers that do not provide a dedicated core for each process to
execute, multitasking is achieved by time sharing the processing capacity,
through e.g. multiprogramming (see [2001ed], p.20).

An operating system is to be called dynamic, when it supports starting
random numbers of new processes to work in parallel (or in a pseudo parallel
manner) at runtime, i.e. when it supports both multitasking and arbitrary
process launch.

An operating system is to be called comprehensive, when its resource man-
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agement provides unified access to the full range of processing resources. Only
then the computer can be utilised by standard applications, and thus inde-
pendent of some front-end processor. E.g., for GPU accelerated systems this
is not the case, as there is no native operating system support, but some
library interface at application design level for explicit resource usage.

4.2 History

Computers being commercially available at first in the 1950s were expensive
highend special purpose calculation machines, their market section being
comparable to super computers today, but they were not supplied with an
operating system. Based on the then new concept of interrupts, Dijkstra
introduced concurrent control of peripherals to the Electrologica X1 in 1957,
but there was neither multitasking nor dynamic job allocation (see [2001ed],
p.15f). Though modern super computers may have some kind of operating
system, usually it is not comprehensive, and definitely not suitable for average
work stations.

Meanwhile, electronic components have been used in automation, simple
processing units and microcontrollers complementing the range of parts used
subsequently. Only hardware abstraction has been provided in this area for
long, and static scheduling is still a common approach today.

It took until 1969, when Unix was developed, and subsequently became
the first widespread comprehensive dynamic operating system for single node
computers. Some thirty years later, in the late 1990s, derivates of Unix started
to be used in automation, enabling unified software development for the
two areas of computation machines, work stations and embedded control
[2013cs].

Parallel computers based on message passing have been developed since the
1970s [1991tw], none of these being equipped with a comprehensive dynamic
operating system up to now. In automation, systems consisting of thousands
of microcontrollers passing messages to coordinate activities (signalling) are
quite common, digital telecommunications being a prominent application (see
e.g. [1990lt]). However, these systems are not equipped with comprehensive
dynamic operating systems, either. Yet, regarding static scheduling, it has
been described earlier as “natural to remove these restrictions” in favour of
“dynamic resource allocation” [1989dm].

Up to now, explicitly parallel algorithms account for only a few specific
parts of software, whereas “the two main arguments against the use of paral-
lel computers today are that they lack software, and that they are difficult to
program” (see [1991tw], p.9). Consequently, and because “the future of par-
allel computation may be strongly influenced by the extent to which efficient
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universality can be found and harnessed” [1989lv], implementing the basics
for some parallel operating system is the precondition for any application
being implemented explicitly parallel in its entirety.

4.3 Related Work

There have been efforts to develop such an operating system.
Amoeba was designed as a Unix based multi machine cluster, i.e. running

a full multitasking operating system on each single node [1990tr].
Barrelfish is not based on an existing operating system, but is designed for

use with conventional hardware (x86 64 or ARM based), that provides large
amounts of random access shared memory per processing unit, 430kB for the
CPU driver alone [2009bb].

Plan 9 is a distributed operating system, designed for use with conventional
work stations, and ported to a variety of processor architectures [1991pp].
It is a consistent further development of the basic concepts of Unix.

Helios was an operating system designed specifically to run on multinode
hardware, namely Inmos Transputer (see [1991tw], p.297). Parts of its de-
sign are similar to the one presented here: The Process Manager and the
Loader cover tasks of the scheduler, the dispatcher, and the loader (see sec-
tion 5), but provide a variety of further functionality, like signal handling
and real time clock control (see [1991ps], p.20). However, the minimum
amount of memory per core is one megabyte (see [1991ps], p.14), limiting
the total number of cores in a reasonable system setup to some thousand.
Furthermore, parts of the operating system refer directly to the design of
some frontend computer, so Helios is not comprehensive. Nonetheless, the
overall design of Helios has been quite promising at its time.

The name “Helios” matches the idea of a distributed operating system
quite well, so it is not too surprising that there are more projects that bear
the same name: Helios was a research project introducing satellite kernels in
heterogenous multiprocessing [2009nh]. Its memory consumption exceeds
32MB per node (see [2009nh], p.3).

Vortex is an experimental “event-driven multiprocessor operating system”
run on Intel SMP hardware [2003kj].

Corey is a many core operating system research project experimentally run
on 16 core x86 64 based SMP hardware with megabytes of cache available
[2008bc]. Numbers on memory footprint are not available, except that kernel
source exceeds 11000 lines of code, most of it written in C.

An exemplary list of five purposes of an operating system for multinode
machines, as it is still widely accepted, is given in [1987bk], p.208:
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“Multitasking” – is obsolete where each user process is assigned its dedicated
core.

“Channel multiplexing” – shall be done in hardware.

“Memory management” – will not be needed as access for each process
is restricted to the local memory of its core. The idea that a “process
must have access to more memory space than physically attached to one
processor” is a conclusion from the wrong assumption that a complete
application program needs to run on one single node, or utilising shared
memory employing global address space.

“Load balancing” – is a task indeed, though a secondary one, when it comes
to optimising a given design.

“Support of the basic data structures: ... Garbage collection for heavily par-
allel machines is not solved yet. Therefore it seems simpler not to share
expressions among different processors” – this is very true, and as allo-
cation refers to processing units, rather than memory, these processsing
units would be the items to collect.

Suggesting the invention of a “new model of computation”, Sterling pro-
poses a “new co-design cycle of all levels of the system software and hard-
ware”, explicitely including the operating system [2009ts]. This co-design is
surely important, but there is not much sense in asking for the next model
of computation, when for the second last model – communicating sequen-
tial processes – that co-design has not yet been performed. However, the
paradigms to achieve this new model have each already been introduced sep-
arately, so all that is needed is to combine and implement them consequently,
particularly a comprehensive dynamic operating system.

4.4 Requirements

To be utilised with a comprehensive dynamic operating system, a parallel
computer system needs to fulfil some minimum requirements in size:

– The size of local memory per core must suffice to hold executable code of
a single process and the amount of data it needs to store locally.

– The number of cores must suffice to run all programs – system function-
ality and user applications – in parallel, where each program consists
of a number of processes, and thus needs the corresponding number
of cores. A lower limit for the number of processes that make up a
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program is given by the overall memory need divided by the core local
memory size.

The size of the executable code of a single process is comparable with the
size of a subroutine in sequential programming. On average, it will be some
kilobyte.

On current single node computers, four kilobyte is a convenient basic mem-
ory allocation size, called a memory page. It is directly comparable to the
basic allocation unit of a parallel computer, a core and its local memory.

Both estimations combined imply that some eight kilobyte will be a suit-
able average size for a single cores local memory. Note that this differs by
orders of magnitude from the gigabytes per core todays work stations provide.

Average single node work stations run some two hundred programs in par-
allel – though most of the programs are inactive most of the time. Programs
substantially differ in memory size, simple system tools will do with just a
few kilobytes, while large office applications may well use megabytes.

Instead of counting memory sizes of single sample programs, the overall
memory utilisation of a single node work station is found to be some gigabyte.
Division by eight kilobyte – the local memory size per single core – results
in some 128 thousand cores per computer.

These numbers match research on parallel computing in the late 1980s,
which has shown it useful to think in the range of “at least tens of thousands”
(see [1991tw], p.5) up to “a million processors” (see [1985dh], p.5, and
[1989dm], p.36), recent publications affirming that it is realistic to project
“millions of processors” (see [2007dm2], p.2).

4.5 Consequences

As explained above, designing a massively parallel computer for general pur-
pose use directly implies the need for an appropriate operating system to
be implemented. On the other hand, implementing an operating system to
be used with massively parallel computers requires hardware to run it on,
be it real or simulated. Consequently, design of both hardware and software
should be carried out simultaneously, comprising the following main tasks:

– Design and prototyping of adequate processor hardware

– Engineering of a parallel computer hardware

– Design and implementation of an operating system

– Implementation of application software
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Realistic project scheduling asks to select the bare minimum from this list,
i.e. use existing or simulated hardware, focus on the basics of an operating
system, and the minimum set of tools to control it.

5 Implementation

5.1 Hardware

An incomplete list of multicore processors and computers gives an impression
of the differences in local memory size, see table 13.

architecture µP local memory
per core

cores per
computer

Greenarrays GA144 F18A [2011ga] 64 word 144

Parallax P8X32A [2011jm] 2 kB 8

XMOS XC-2 XS1-G4 [2009mm] 8 kB 32

Tilera TILEPro64 [2013tc] 64 kB11 64

IBM PowerPC POWER8 [2016bb] 512 kB11 96

Ambric AM2045B [2006th] 1 kB 344

Kalray MPPA2-256 [2016ki] 8 kB 256

Adapteva E64G401 [2012ai] 32 kB 64

table 13: multicore processors key figures

Both F18A and P8X32A do not provide enough local memory per core.
The number of cores on P8X32A is too low for even the minimum operat-
ing system test setup. TILEPro64 does not provide hardware based channel
communication means. AM2045B has been discontinued 2012. For MPPA2-
256, detailed information or an evaluation board is not publicly available.
With 32 cores, XS1-G4 is suitable only for basic operating system tests,
but it provides hardware based channel communication, and an appropriate
amount of local memory per core. It lacks details in channel synchronisation
– checking channel data availability is only implemented on channel input,
so non-blocking output would need some software work-around – but basic
tests can be done without.

The XMOS XC-2 computer was chosen for a first prototype, but this first
approach has been cancelled later, because of the deficiencies described above,
mainly inavailability of test hardware with more than 32 cores.

11on-chip L2 cache per core
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Operating system basics have been implemented, the concept being similar
to the one realised with the second prototype (see section 5.2), the main
differences are:

– No boot code is implemented, toolchain provided initialisation is used
instead

– Software is written in plain C [1978kr]

– Ethernet driver is implemented with IP/UDP [1980jp] and TFTP
protocol [1992ks]

– UART driver and console

– No application software except a simple command interpreter and a simple
system state inspection tool

Arbitrary process creation has been proven to be possible, and the concept
of generic hardware based peripheral access has been verified and shown it
possible to achieve full 100 MBit throughput on ethernet [2012sb].

Both implementation and tests also showed, that the overall concept of
channel based communication between processes is suitable.

5.2 Simulation

To reduce the dependency on available hardware, a second prototype has
been based on simulated hardware. For this purpose, a very simple processor
has been designed, the Null Operand Parallel processor [2016os1]. Parts of
its design are inherited from the XS1-G4 concept, namely hardware channel
communication support and fixed round robin thread scheduling. For prop-
erties not relevant for the prototype the most simple solutions were chosen
to reduce overall project complexity, e.g. by using a byte code based design.

To allow the simulated processor to be programmed using a high level lan-
guage, a compiler is needed, and because it needs to be implemented anew
anyway, a customised programming language – the Guarded States Language
– has been presented, which combines concepts from different existing lan-
guages to support programming the prototype most smoothly [2016os2].

No peripheral drivers have been implemented, except for a simulated text
console and an interface to allow reading and writing files from outside the
simulated environment.

The processor implements four nodes – each capable of executing eight
instruction sequences in parallel, i.e. eight cores per node – and one common
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BOOT ROM FILESERVER CONSOLE

figure 14: 16 processor test setup

switch for channel communication both internally between the four nodes
and externally to other processors.

A simple test setup involves e.g. 16 simulator instances, each of which
simulates a processor consisting of four nodes and a switch. This sums up
for a total of 512 cores. The single simulators are connected via simulated
external links, i.e. data sockets (figure 14).

Only for the first simulator three peripheral lines are externally connected:
A character stream input line, a corresponding output line, and a bidirec-
tional connection to an external file server tool to allow access to files external
to the simulation. Additionally, the first node is configured to accept the ini-
tial boot program via a specialised line connected to a boot ROM.

BOOT ROM FILESERVER CONSOLE

figure 15: initial boot program loaded into first node
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5.3 Boot Code Supply

At startup time, each node executes a short first stage loader code snippet
(see [2016os1]). On the first node, it reads the operating systems initial boot
program from a simulated boot ROM, i.e. from an external file (figure 15).
This boot program is composed of code to perform system initialisation (boot
sequencing, processor enumeration, and routing table setup), provide periph-
eral access (console input and output, file server access), and runtime process
creation support (process loader, dispatcher, and process schedulers)12.

Once loaded into the first node and started as a single boot process on its
first core, the boot program starts the processor enumeration process and the
console driver. Then it starts four message distribution processes – one for
each external link – which are needed to avoid message congestion (figure 16).

BOOT
PROCESS CONSOLE -ENUMERATOR DISTRIBUTE

#0
DISTRIBUTE

#1
DISTRIBUTE

#2
DISTRIBUTE

#3

figure 16: first node on first processor during system initialisation

The latter is done on each processor that is started later on, not only on
the first node (figure 17).

BOOT
PROCESS - - -DISTRIBUTE

#0
DISTRIBUTE

#1
DISTRIBUTE

#2
DISTRIBUTE

#3

figure 17: first node on other processors during system initialisation

5.4 Boot Code Distribution

The boot program sends its own code over the external links, causing it to be
accepted by the first stage loaders of its four neighbouring processors. It uses
an exact copy of its own code with one single variation to allow the receiving
node to detect that it is not the first node in the system (figure 18).

Not knowing the external links grid topology in advance, a node may
receive initial code more than once, so it will subsequently discard any extra
copies it will receive (figure 19).

12The prototype implementation is less than 4 kB of executable code.
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figure 18: boot code distribution, phase 1

figure 19: boot code is discarded, when received again (×)

Later during system initialisation, just before switching to routine system
operation, the boot program sends a partial copy of itself – only comprising
the scheduler process code – to the remaining three nodes local to the proces-
sor (figure 20). Both processor enumeration and routing tables are resources
common to all nodes in a processor, so further initialisation is not needed on
these additional nodes.

figure 20: scheduler code distribution

5.5 Processor Enumeration

Initially, routing tables are empty for all processors, and only the first node is
aware of its identity. As the calculation of routing tables requires processors
to be enumerated, the latter is undertaken first.

The processor enumeration process addresses all processors, one by one,
starting at the first processor, causing each processor to contact its four
neighbours – again one by one – and assigning numbers to them (figure 21).
Note, that enumeration is done per processor, because the implicit numbering
of the contained nodes and cores is predefined. This procedure requires the
neighbouring processors to check with the contacting processor, and make
sure they both know on which of the external physical links they are located
with respect to the other processor.
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figure 21: processor 9 enumerating its four neighbours

While the contacting processor is able to send a message explicitely to
one of its physical neighbours, the neighbouring – receiving – processor is
not aware of the origin of the message. Therefore it will send a response
to all of its four neighbours in turn, a message including the original con-
tacting processors number as well as its own physical link number. Three of
these neighbours will drop the message silently as they do not feel addressed,
whereas the original contacting processor will detect the valid response, and
finally inform the newly enumerated processor about which physical link cor-
responds to their relation. In doing so, it sets up a route between the two
processors in question (figure 22).

Furthermore, as the processor currently in charge of enumerating its neigh-
bours is either the first processor, or is reachable via processors that have
been enumerated earlier, it is able to set up a route from the newly enumer-
ated processor via itself all the way to the first processor. Simultaneously,
the first processor is informed on how many processors have been assigned
new numbers, so that these processors will subsequently be addressed by the
enumeration process themselves.

The process of enumeration is continued until no more unenumerated pro-
cessors are found. By then, all processors are able to send messages to the first
processor, and the first processor is able to send messages to all of them, but
the routing tables are incomplete in that they do not allow sending messages
between arbitrary processors.

Obviously, the numbering scheme that will result from this algorithm is
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figure 22: processor 9 negotiating the link with its first neighbour

35



far from optimal. An optimised algorithm should choose an enumeration to
reflect the physical network topology, so that optimisation of the resulting
routing table, and thus reduction of routing table size, can be achieved.

5.6 Routing Tables

To calculate complete routing tables, the processor enumeration process ad-
dresses all processors again, one by one, causing them to send some path
establishing message to all four neighbours, who in turn will propagate these
messages to all neighbours, and so on, increasing the hop count of the message
each time it is resent.

All processors keep track about the minimum distance by inspecting the
hop count of the message, and thus find out the corresponding neighbour
and link to store into the local routing table, for which the distance to the
originating processor is shortest. The algorithm is similar to the second one
presented by Dijkstra [1959ed], differing in that it proceeds asynchronously.
This is the reason why each processor must keep track of the minimum dis-
tance, because it cannot rely on some global algorithm loop count.

Each time a message is found to indicate a lower distance at some processor,
the global enumeration process is asked to increase its balance by three, but
when instead no lower distance is found, the balance will be decreased by
one. This way the enumeration process will find the routing table calculation
for one processor to be complete simply by waiting for the balance to be
equalised. It will address the next processor only when the previous one has
finished its routing path determination, not because the algorithm asks for
it, but to avoid message congestion and system deadlock.

This algorithm to fill the routing tables offers no optimisation other than
distance calculation. A better algorithm should at least account for static
traffic optimisation. Dynamic traffic optimisation, e.g. blocked or jammed
route by-passing, would be an advanced system run time task.

5.7 Routine System Operation

As soon as all processors have completely calculated their routing tables, the
system switches from initialisation mode to routine system operation: The
first node shuts down all processes except the console, then newly starts the
dispatcher process, the loader process, and the file server (figure 23). Finally
it loads an arbitrary initial user process – named init – by means of normal
process creation.

All other nodes shut down all processes as well, but only start one process
– the scheduler (figure 24). Note that no scheduler is started on the first
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figure 23: first node at routine system operation

- - - - - - -SCHEDULER

figure 24: any other node entering routine system operation

node, because the dispatcher potentially will use up large amounts of the
local memory to keep track of system wide resources.

Up to this point, only one node per processor was active. The remaining
nodes are now fed with just the schedulers code, as described earlier (see
section 5.4).

5.8 Dispatcher and Schedulers

With the commencement of routine system operation, a process may no
longer be started on a statically fixed location, but invoking a new pro-
cess is subject to system resource management. The initial user process init
mentioned above is the first process to follow this rule.

The operating system not only needs to keep track of the resources, but
also provides means to make use of them. For reasons of simplicity, one single
process keeps track of all nodes and how many cores and how much memory
they currently have at their disposal. This process – the dispatcher – will
accept a request to start a new process, and redirect it to an appropriate
node. As the nodes hardware is not capable of starting a new process by
external request, another node local system operating process must perform
this action instead. This is the reason why each node runs a seperate instance
of the scheduler process. Additionally, the scheduler process is responsible
for local memory management, and it will inform the dispatcher process
each time the amount of node local free resources changes: After process
creation, and when a process has stopped. For the latter reason, it is also
the scheduler that will receive process exception messages informing it about
process termination.

With the request to start a new process the dispatcher process accepts the
port identification of the requesting process, information about the relative
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amount of memory the process shall use (the dimension), and the binary
code stream (see [2016os2]). It calculates the absolute amount of memory
to allocate for the process and sends all the information on to a selected
scheduler. It then resets its resource record for the selected node to zero to
avoid allocation conflicts.

The scheduler – receiving the allocation information and the binary code
stream – will determine a contiguous memory block for the code and one for
the data, write the code into the first block, and start process execution. Then
it acknowledges process creation to the requesting process, so the latter can
access the control channel. Finally the scheduler will recalculate the amount
of available memory and send a report to the dispatcher, together with the
number of available cores.

Clearly, in a system with a large number of cores, to burden a single dis-
patcher process with core selection would make it a bottleneck, so an opti-
mised dispatcher should be implemented as a set of distributed processes.

5.9 Loader

When starting a new process, usually its code is not available in memory, but
resides in an external file, which is known by name. Same as the dispatcher,
the loader process serves the task of starting a new process, but instead of
taking the binary code as input, it accepts the name of the process, asks
the file server process to load the corresponding external file, and hands the
executable binary code over to the dispatcher (figure 25).

SCHEDULER PROCESS B PROCESS A

DISPATCHER LOADER FILE
SERVER

1: new("B.nop")

2: read("B.nop")

3: code
4: new(B)

5: new(B)
9: report(Y)

6: store
and start

7: acknowledge

8: control

first node

node Y node X

figure 25: process A starting a new process B by name

5.10 File Server

The file server process mandatorily resides on the first node, as it must make
use of the peripheral line that is bidirectionally connected to an external
service that provides access to files. Any process may connect to the first
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port of the file server and ask for a file to be read or written. Files are
always read or written entirely, there is no provision to read partial files, or
to change existing files. Reading or writing a file is done chunkwise, to avoid
a single process blocking other processes to access files simultaneously. The
protocol provided by the file server is similar to TFTP [1992ks], cut down
to a minimum.

5.11 Console

Like the file server, the console process mandatorily resides on the first node
in order to be able to access the two peripheral lines that constitute standard
input and output of the system. The console process provides two ports, the
first one for input, the second for output. Note, that data transmission on
both ports is not byte oriented, but word wise, as is all data processing in the
Null Operand Parallel processor system. For text message encoding, usually
Unicode [2009uc] is used directly, and it is up to the invoking entity to
convert data from and to the system to the character set that is handled by
its terminal.

Any process may connect to the first console port to exclusively reserve
input. It sends one word indicating its own port, to inform the console about
where to send console input, but it must not end the connection, unless it
intends to release the console input. Data sent to the second port will be
transmitted to the output peripheral line.

5.12 User Processes

When routine system operation is entered, the last task performed by the
boot process is to load an initial user process named init. In a simple system
configuration init will refer to a shell to allow a user to directly control the
system. In a more mature system design a separate initialisation program
may launch various system services, but for test purposes a shell will do.

User processes may handle both input and output channels, the number
of which may differ depending on the purpose of the process. E.g., a process
designed to merge two streams would provide two input ports and one output
port, while a process that is to duplicate a stream would provide one input
port and two output ports.

It is up to the user process to announce the number of ports it provides. For
the output ports, it is informed by the invoking process about the destination
ports, and thus is able to connect to them autonomously. For the input ports
it provides, it needs to inform the invoking process about these ports, and
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subsequently wait for incoming connections, because it is always the sending
process that initiates the channel connection.

This negotiation is done on the control channel of the user process, and by
convention, all users processes follow the same scheme (figure 26).

port A

number of output ports

output port #0
...

number of input ports

input port #0
...

end

invoking process
port A

new process
ctrl port

figure 26: initial port negotiation for a user process

5.13 User Shell

The user shell process is a simple text based command line interpreter (see
page 54). It scans an input line for tokens, invokes the appropriate user
processes, and makes them connect to the right input and output ports.

In a higly parallel channel based environment, a set of processes does not
simply work on files, or in a linear pipeline, but needs to be connected in
more complex networks. To avoid a notation for explicit port addressing, an
approach is chosen similar to the Polish Notation – initially introduced in
the 1920s by  Lukasiewicz for the logic of propositions [1970jl]. No specific
operator symbols, parantheses, or channel numbering are needed. Setting up
a network of user processes is done by writing their names in the desired
order. A stack of port identifiers is maintained internally to keep track of the
order in which to connect user processes.

Each command line is evaluated according to the following syntax:

line ::= { term }
term ::= { command | string }
command ::= word [ “:” number ]
string ::= “"” { char } “"” { “"” { char } “"” }
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The line is evaluated from left to right. For each command, the corre-
sponding process is started. During port negotiation with a single command
process, the shell takes port identifiers from its internal stack one by one to
provide the process with output ports as requested. Then, it accepts input
port identifiers from the process, and pushes them onto the stack one by one.

At the beginning of a line, the stack is conceptually initialised to hold an
infinite amount of identifiers for the second port of the console process, i.e.
standard output. This way, any open output port will eventually be directed
to the system console.

At the end of a line, supposed the stack is not empty – not counting
the virtually infinite amount of console output ports – the top most port is
connected to the console input, but any further ports remaining on the stack
are immediatly fed with an end token13.

Regarding the notation, the processes in a command line are invoked from
left to right, but data flow usually will be from right to left, because the shell
will provide port identifiers from commands to the left as output ports, and
pass input port identifiers on to commands to the right.

Immediate text data may be injected into an input port of a process by
writing it in double quotation marks. The shell will transmit the text data
into the corresponding input port of a command to the left promptly.

To start a process with a given dimension (see [2016os2] for details), the
command may be followed by a colon and a number,

The stack order is fixed, so currently changing it would need an extra
permutation process. Alternatively, a special notation could be introduced
for direct stack permutation within the shell.

The following example reads a text from a file fox.text, concatenates it
to the output of a Hello World program, formats it to keep a line width of
at most 20 characters, then duplicates the result, storing one copy into a
file named doc.text, and converting the other copy to upper case, finally

13This is equivalent to input from /dev/null with Unix.

upper dup parafill
20

concat fread "fox.text"

fwrite "doc.text" hello

CONSOLE FILE SERVER

figure 27: data flow in a user processes network

41



sending the result to console output (figure 27).

> upper fwrite "doc.text" dup parafill:20 concat hello fread "fox.text"

HELLO WORLD THE

QUICK BROWN FOX

JUMPS OVER THE LAZY

DOG.

5.14 Application Software

Eventually, the purpose of a computer is to be applied, so what is needed is
application software. There is a vast amount of possible applications, which
is not addressed here in detail at all. However, a minimum set of tools is
necessary to check system functionality and to support basic data processing.
Furthermore, a few representative yet simple examples are given to show
applicability of the system designed.

Two tools serve system inspection. Both the dispatcher and the schedulers
allow their state to be queried, so the tools only need to send a query to
the system process and output the formatted result to the console. The first
tool, qdisp, provides a table on the dispatchers state, e.g. for a four processor
system:

> qdisp

8a: 0/0000/0000

8b: 0/0000/0000

8c: 7/3eff/0000

8d: 7/3eff/0000

9a: 7/3eff/0000

9b: 7/3eff/0000

9c: 7/3eff/0000

9d: 7/3eff/0000

10a: 7/3eff/0000

10b: 7/3eff/0000

10c: 7/3eff/0000

10d: 7/3eff/0000

11a: 7/3eff/0000

11b: 7/3eff/0000

11c: 7/3eff/0000

11d: 7/3eff/0000

Each row displays the resources of one node, with four nodes a through d

per processor, which in turn are numbered from 8 upwards. The first value
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is the number of available cores, the second and third are the size of the
largest and the second largest contiguous memory area at the node. In the
example, the first node 8a is not available, as it is used for system purposes
(see 5.7), the second node 8b is blocked by its scheduler during startup of a
process – which in this case is the inspection tool itself. All the other nodes
are currently idle and empty.

The second tool, qsched, shows a schedulers state, by default the one on
the node it is executing on, but by providing a dimension 4×processor+node

– starting at 33, because processors deliberately are counted from 8, and the
first node on the first processor does not provide a scheduler – a different
node may be selected:

> qsched:33

8b: 0101..4000 t:9162d70d c:00029a43

1: 0101..01f0/01f1..03c7

2: 03c8..0457/0458..057a

3:

4:

5:

6:

7:

The first line indicates the nodes identity 8b, the memory range available
for user process allocation, the nodes current time counter, and the total
instruction cycle counter for the node. The subsequent table provides for
each core that currently executes a process the constant pool range and the
data pool range. Only seven cores are listed, as core number 0 is used by the
scheduler. In the example, the first core executes the init process, which is
the shell, and the second core executes the qsched tool.

Furthermore, a set of simple tools is available for basic data processing:

fread – reads a file name on the input channel, connects to the file server
to read the file, and write the contents to the output channel.

fwrite – reads a file name on the first input channel, reads data from the
second input channel, and connects to the file server to create and write
the file.

concat – reads data from the first input channel and writes it to the output
channel, then reads data from the second input channel and writes it
to the output channel.
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dup – reads data from the input channel, and writes it to both of its two
output channels.

buf:n – is given a dimension, and maintains a ring buffer of that size, reading
data from the input channel to the buffer, and writing data to the
output channel from the buffer. When the buffer is full, it does not spill
input data, but blocks instead – until the output channel is accepting
data again and consequently the buffer will no longer be full.

merge – reads data from two input channels, message-wise in random order
according to availability, and writes all data to the output channel.

nil – writes an end token to the output channel. This is equivalent to input
from /dev/null with Unix.

absorb – reads data from the input channel and discards it. This is equiv-
alent to output to /dev/null with Unix.

hello – write a message to the output channel.

upper – reads data from the input channel, and writes it to the output
channel, converting latin lower case letters to upper case (see page 53).

parafill:n – is given a dimension, the designated line length. Reads text
from the input channel, and writes it to the output channel, refor-
matting blocks of text to limit and fill line length to the dimension,
whenever possible.

Process instantiation may be different, depending on the needs. The system
inspection and data processing tools listed above are loaded from an external
file server and executed individually as requested, and they terminate when
their work is done. This is comparable to system tools invoked from shell or
script with Unix.

Other processes will be started once and never stop, providing a service.
For utilisation, another process may connect to the control channel, provide
configuration, write and read data, and so forth, thus occupying the service
for a while. The difference is that freeing the service does not stop the process,
but makes it available to the next user. This type of process occassionally is
called a daemon – or a driver, when it provides access to hardware function-
ality such as peripherals. The dispatcher is an example for a daemon, while
file server and console are examples for drivers.

Large programs will be implemented as a set of processes, invoking each
other. It is a design question whether parts of the program will run per-
manently, as a daemon does, or be started anew whenever its functionality
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is needed. The latter is similar to a function called, but the difference is
that starting the process anew involves loading the code to memory again.
There is not much use in keeping the code around in memory elsewhere, as
it does not make much of a difference whether the code is transferred from
one memory location to another and then started, or it is kept running as a
daemon.

When it comes to implementing large applications, a variety of strategies
will be used to spread its functionality to processes as required. Two charac-
teristic options are to replicate the key algorithm in an application and split
up the data accordingly, to increase throughput, or to split up a complex
algorithm into parts, see table 28. The first option is popular e.g. in image
processing. The latter option may prove useful where processing of a data
stream is time consuming, and it is possible to split up the algorithm into
stages of a pipeline (multiple passes). Moreover, it is mandatory where the
algorithm is to complex to fit the code into the local memory of a single pro-
cessing unit. A problem solving algorithm may also be split into processes to
investigate different solutions simultaneously (see [1994os], p.67f).

simultaneous sequential
homogenous
(an algorithm replicated)

data split into chunks
or tiles

multiple identical
passes

heterogenous
(an algorithm split)

partial algorithms,
possibly interacting

pipelined processing of
data

table 28: Multiple Process Algorithms

Implementation of a basic set of development tools is not required initially,
but will be needed later (e.g. editor and compilers).

6 Results and Discussion

Combining the hardware sketch with a comprehensive dynamic operating sys-
tem allows the operation of general purpose application software comparable
to what contemporary work stations allow. It is obvious that approaches to
software design will differ substantially from the usual practice with shared-
memory based systems. Software existing for the latter cannot be ported just
as is, but it has to be rewritten, and in many cases it has to be completely
rethought and redesigned: “The effective use of concurrency requires new
algorithms designed to exploit this locality” (see [1987ms], p.36).
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Based on the assumption that up to 6000 cores fit onto a single chip,
the system clock frequency at 400 MHz, shared among every eight cores,
so each core is executing instructions at 50 MHz, a rough estimation for the
performance could be 300000 MIPS per chip. Though this is just a theoretical
upper bound, the design strongly suggests the presumption that performance
per die area will be much higher than with existing shared-memory based
systems, by the fact alone that the percentage of silicon lying dead and
unused is much lower, as Hillis anticipated (see [1985dh], p.4).

For the sake of being able to achieve a first draft, lots of details have been
simplified, and it is beyond question that a really usable system requires
refinement in most respects and research in various fields. E.g., the instruction
to start a new process takes five operands from the stack, which makes it
difficult to implement in hardware.

6.1 Instruction Set Architecture

A zero address stack design has been chosen for three reasons: First, imple-
mentation of a simulator for it is quite simple, and second, code generation
is straightforward for a compiler designed according to [1977nw]. Third,
instruction encoding is compact compared to other architectures, with only
eight bits for a full instruction. However, functionality per instruction is quite
restricted, e.g. an extra instruction is needed for each operand that needs to
be fetched from memory. To increase performance, the stack oriented design
may be optimised (see e.g. [2015jb]), or another instruction set architecture
may be chosen.

6.2 Hardware Supported Scheduling

With the current design, in each node, one core is used for the scheduler, to
accept and start a new process, to detect its termination, and to report cur-
rent allocation to the dispatcher. Adding associative circuitry (see [1996hv],
p.53) to manage memory allocation, it is possible to replace the software im-
plemented scheduler by supportive hardware, see figure 29, and figure 30
14. The dispatcher then would send a process to start simply to some spe-
cial port on the destination node. Both upon start and termination the core
hardware would automatically send a resource indication message back to
the dispatcher.

14The depicted circuitry allows allocation of a page by applying the desired core and
page number, set ALLOC high, and then signal a high pulse on SET. Deallocation is done
by applying the desired core number, set ALLOC low, and then signal a high pulse on SET.
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figure 30: hardware scheduler allocator single page detail

6.3 Channel Virtual Addressing

Like global memory is the main spatial resource on shared-memory systems,
processing units are the main resource on the proposed design. When re-
sources are exhausted, idle processes might be frozen, and their current state
and memory content swapped out to some external memory. To be able to
restore and continue execution of such a process, channel virtual addressing
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[2013os] is needed, because no guarantee can be given for the process to be
loaded back to the identical location where it resided earlier.

Other than for memory as a resource, which is flat and thus usually evenly
accessible in whichever order it is arranged on a single node, access to chan-
nels depends on the network topology, and congestion may occur when too
many messages are sent over a single route with no alternative available.
Here, channel virtual addressing will also be useful when processes shall be
relocated for traffic optimisation.

6.4 Efficient Message Routing

Efficient routing support is not trivial and needs to be addressed separately. It
is subject to research for a long time – both algorithmic basics [1959ed] and
theoretical background [1987pu] – and extensively (e.g. [2006pf]), and still
is extensively being explored (e.g. [2009mf]). As with the work presented,
algorithms should address general network topologies, initially unknown, and
with the nodes initially unlabelled.

6.5 Endianness and Alignment

Direct byte addressing had been chosen, among others, to simplify text pro-
cessing at a time when memory was expensive, and text was encoded at
no more than some eight bit per character. Byte adressing causes memory
addresses to be counted in bytes, while memory access is word-wise, today
usually at 32 or 64 bits per word. Access to odd memory addresses causes
data bus misalignment, which is handled either by shift adjusting data at han-
dover from memory to registers, or by trapping. Once available in a register,
the order in which contiguous bytes are located with respect to each other
depends upon endianness of the system. As endianness differs on various sys-
tems, it is an everlasting wealth of confusion when it comes to transferring
data or porting software from one system to another.

To allow non-latin text encoding, and to avoid trouble through text re-
coding, today text characters usually are encoded with more than eight bits.
The Unicode Standard [2009uc] is the most universal approach, with char-
acters represented by 21 bits each. The simplest encoding on a system with
32 bits per word is to store one character per word. The Unicode Standard
refers to this representation as UTF-32. Popular representations like UTF-8
or UTF-16 are used to save space in data storage, but they can be taken for
specific data compression formats. As such, where availability of storage is
an issue, explicitely compressing text to UTF-8 may well be a solution.

48



Both endianness confusion and misalignment annoyance vanish when byte
addressing is given up (see [2016os1]).

6.6 Data Transmission Protocols

Peripheral drivers need to handle incoming and outgoing data streams in
real time. The structure of the data is defined by the respective protocol
standard, often specifying various interdependencies among part of a data
stream, e.g. a checksum to depend on a subsection of the stream.

The receiver will have to evaluate such interdependencies, and the sender
will have to generate data to fulfil them. A protocol may or may not be
designed to allow streamed processing – like it is also used in cut-through
switching – i.e. fulfilling all interdependencies with no more than a limited
fixed amount of local memory. TCP [1981jp] e.g. transmits a checksum
of the data that follows, so potentially a full data packet has to be stored
temporarily, before the checksum can be calculated and the header sent,
eventually followed by the data.

6.7 Memory Hierarchy

The single node von Neumann computer stores data in registers and memory.
Magnetic drums and tapes, harddisk and floppy disks are added to provide
permanent data storage. Cache memory has been introduced to compensate
for slow DRAM access in relation to processor execution speed, and for the
memory access bottleneck in a shared-memory system.

Replacing global DRAM by local fast memory renders cache memory su-
perfluous. Large amounts of global memory are either superseded by large
amounts of processing units, or by external memory resources, be it e.g. hard-
disk storage or DRAM based offline storage. The latter may be implemented
by attaching DRAM to selected nodes. To simplify system application, all
these external storage devices shall be controlled by a single universal type
of interface. It is subject to further research whether driver processes are
needed to provide access to the single storage devices, or whether there are
more flexible approaches. Generally, it is recommended to keep the memory
hierarchy as flat as possible and reduce the number of concepts.

6.8 Floating Point Support

Floating point arithmetic has been implemented in some of the first com-
puters ever [1936kz]. Undoubtly, it is very useful for various categories of
applications. On the other hand, the hardware demand to implement it is
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higher than with fixed point arithmetic (see e.g. [1989dm]). However, increas-
ing the hardware demand for each single core would foil efforts to integrate
as many as possible cores on a given die area. Further research is needed to
investigate the question how floating point arithmetic can be supplied with
as little hardware demand as possible. Possibly the trick is to split up calcu-
lation into simple and fast supportive instructions, and maybe just three or
four of these would do:

• load floating point number into two registers E and M

• store two registers as a floating point number to memory

• normalise two numbers with respect to each other

• and maybe some shifted register addition instruction

6.9 Loading and Execution of Processes

Loading the code for a process usually takes time, the larger the process to
run the longer. Once loaded, starting the process is constant effort, mostly
neglectable. For applications that need to execute large numbers of processes,
the overhead of loading and starting them can be substantial [2011hh].

Research is required to find, whether it is efficient to provide functionality
by a daemon instead of loading and executing a process over and over again,
or whether there are ways to avoid reloading process code, possibly by some
method of caching it instead of just freeing its memory region.

6.10 Privilege Control

On shared-memory systems, privilege control is generally achieved by running
lower priority processes with a modified instruction set to block privileged
operations, and by blocking access to regions of physical memory that do not
belong to the process. The latter is not relevant on a system with no shared
memory, instead access to other processes and their data is only possible
using channel communication. Consequently, privilege control would ask for
restrictions in sending messages to specific ports. This may be achieved by
marking each port with its level of access permissions, and then blocking
incoming messages that originate from any port with lower privileges. To be
able to detect the privileges of the sender, these would be part of the message
header, as it is automatically composed at the senders outgoing port.

All this can be implemented purely in hardware – except setting the ac-
ceptance permissions for each single port, which is under decision of the
privileged process.
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When more than one user shall use the system and each user is to be
restricted to its own group of processes, some kind of owner information
would need to be added to each message header. Evaluation of the access
restrictions at the receiver of a message then would be too complex to be
implemented in hardware, but would require supportive software. Reading
incoming data, identification and access permissions of the sender would be
made available by the port hardware, so the receiver can decide on whether
to accept the message or not.

6.11 Channel Congestion Avoidance

Due to the limited number of connecting channels from one node to another
– especially where nodes are located on separate chips – it may happen that
ongoing and unpaused transmissions between these nodes make use of all
transmission lines available. When in this situation an additional connection
between these nodes is required, while completion of the other transmissions
depends on the additional connection to be established, the system faces
deadlock. The obvious solution should be to fix the algorithm, so that un-
paused transmissions do never depend on additional channels to be set up.

However, it is subject to further research to find whether this is always
possible, or, if not so, whether it is necessary to avoid the deadlock by au-
tomatically pausing one of the ongoing transmissions to temporarily free a
connecting channel. Some processes will be able to decide precisely when to
pause the channel, because they have enough information on the expected
timing of their output data. Other processes, namely those that receive a
stream and propagate the processed data in turn, will not be able to figure
out timing information.

A heuristic approach is to pause the channel after some timeout. Depend-
ing on the overall application design, this may work, but it may also cause
the deadlock to be inverted. Another approach is to detect the incoming
data being paused and pause the output stream accordingly. This latter so-
lution would involve a simple extension to the hardware functionality for the
detection of the pause token at the receiver.

7 Conclusion

Though much higher performance per die area could be achieved with the
proposed system architecture, most of existing software is inherently non-
parallel, designed for sequential execution on single node shared-memory
systems. Memory allocation and process interoperation of the two approaches
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do not match at all, thus most software will simply not be portable, and
consequently needs to be rewritten.

On the other hand, without software the best hardware will be of no use.
Accumulated cost for a contemporary operating system kernel alone is given
to be in the range of hundreds of years, suggesting that reaching the state of
usability, which we are used to expect from a mature system, is quite high.
This may be a reason why implementation of multinode systems has been
avoided for long – but there is no way around: Rewriting all the software is
expensive.

However, research and prototype implementation are to prove practica-
bility of the basic design principles, they do not need to fulfill quantitative
requirements in the first place.

As has been shown, it is and will be crucial to reduce complexity, to keep
the design as simple as possible. Otherwise the highest possible number of
cores per chip, and thus the highest possible performance per die area, will
not be achieved.

Moreover, it has been shown that both co-design of hardware and software,
and a conceptually simple operating system are doable. Such an approach
may serve as a remedy for the memory bottleneck impasse.

Further research needs to focus on two topics: First, a simplified and
more implementation-oriented design of a hardware prototype needs to be
designed. To be able to realistically simulate parallelism, it should be imple-
mented in hardware, e.g. FPGA based.

Second, basic algorithms and applications need to be designed and im-
plemented to demonstrate use cases for the system. Both system related
algorithms – e.g. for message routing – and application related algorithms –
e.g. for storage allocation – are equally important for advanced deployment
as well as the determination of more realistic numbers and values concerning
the performance one can expect to attain.

52



Appendix: Source Code Examples

Upper Case (upper.gustl)

process upper(ctrl)

state data, break

port in, out

word i

start

if not ctrl ? i then { port negotiation, see figure 26 }

next break

done

ctrl := i { respond to invoking process }

ctrl ! 1 { number of output ports }

if not ctrl ? i then { receive output port identification }

next break

done

out := i

ctrl ! 1 { number of input ports }

ctrl ! in { provide input port identification }

ctrl ! end { port negotiation done }

next data

on data \ in ? i: { read input word when available }

if (i >= ’a’) and (i <= ’z’) then

i := i + (’A’ - ’a’)

done

out ! i { send processed word to output, may block }

next data

on data \ in ? end: { when end of input stream is detected }

out ! end { ... close output stream likewise }

next break

on break:

stop
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User Shell (ulsh.gustl)

process ulsh(ctrl)

state prompt, space, error, input, name, dimension, command,

console, string, quote, break

port in, out, cmd

word n, c, d, i, p

word buf[80]

word tos

word stack[128]

procedure nilinput()

do

while tos repeat #stack times

tos := tos - 1 { remove all ports from stack, }

cmd := stack[tos] { ... closing each single port }

cmd ! end

done

return

start

if not ctrl ? n then { port negotiation, when ulsh is invoked }

next break

done

ctrl := n { respond to invoking process }

ctrl ! 1 { number of output ports }

if not ctrl ? p then { receive output port identification }

next break { for ulsh, output and input would }

done { ... usually be connected to the console }

out := p

ctrl ! 1 { number of input ports }

ctrl ! in { provide input port identification }

ctrl ! end { port negotiation done }

tos := 0 { stack of port identifiers initially is empty }

next prompt

on space:

if c = 10 then { if upon end of line ... }

if tos then { the port stack is not empty, then }

tos := tos - 1 { ... take the top port }

n := tos

nilinput()

cmd := stack[n]

next console { ... and read input from console into it }
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done

next prompt

done

next input

on console \ in ? c:

cmd ! c

if c = 10 then

cmd ! end

next space

done

next console

on error:

out ! ’f’

out ! ’a’

out ! ’u’

out ! ’l’

out ! ’t’

writeln(out)

nilinput()

next prompt

on prompt:

out ! ’>’ { print some command prompt }

out ! ’ ’

out ! end

next input

on input \ in ? c:

if c = ’"’ then { some quoted string, see page 40 }

n := 0

if tos then { ... directly fed into next port, }

tos := tos - 1 { ... when stack is not empty }

cmd := stack[tos]

else

cmd := p { otherwise sent directly to standard output }

done

next string

elseif c > ’ ’ then

buf[0] := c

n := 1

next name
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done

next space

on name \ in ? c:

d := 0

if c = ’:’ then { command name followed by a dimension }

next dimension

elseif c > ’ ’ then

if n = #buf then { command name buffer overrun }

next error

done

buf[n] := c { collect characters into name buffer }

n := n + 1

next name

done

next command

on dimension \ in ? c:

if c <= ’ ’ then

next command

elseif (c < ’0’) or (c > ’9’) then

next error

done

d := d * 10 + c - ’0’

next dimension

on command:

cmd := PORT_LOADER { connect to system loader process, }

cmd ! cmd { ... see figure 25, step 1 }

cmd ! d { send dimension first, }

i := 0

repeat n times

cmd ! buf[i] { ... followed by command file name }

i := i + 1

done

cmd ! ’.’

cmd ! ’n’

cmd ! ’o’

cmd ! ’p’

cmd ! end

if not cmd ? i then { receive schedulers acknowledge, }

next error { ... see figure 25, step 7 }

done
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if cmd ? end then done

if not i then

next error

done

cmd := i { connect to new process, see figure 25, step 8, }

cmd ! cmd { ... and provide it with own port identification }

if not cmd ? n then { wait for desired number of output ports, }

next error { ... see figure 26 }

done

repeat n times { provide new process with n output ports }

if tos then { ... if available from stack }

tos := tos - 1

cmd ! stack[tos]

else

cmd ! p { otherwise let it connect to standard output }

done

done

if not cmd ? n then { wait for number of input ports }

next error

done

repeat n times { receive n input port identifications }

if not cmd ? i then

next error

done

if tos <= (#stack - 1) then { ... and push them onto the stack }

stack[tos] := i { ... to be connected to output ports }

tos := tos + 1 { ... of further processes }

done

done

if cmd ? end then done { expected end of port negotiation }

cmd ! end

if tos > (#stack - 1) then { port stack overflow }

next error

done

next space

on string \ in ? c:

if c = ’"’ then

next quote

done

cmd ! c

next string
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on quote \ in ? c:

if c = ’"’ then

cmd ! ’"’

next string

done

cmd ! end

next space

on input, name, dimension, console, string, quote \ in ? end:

out ! ’s’

out ! ’t’

out ! ’o’

out ! ’p’

writeln(out)

next break

on break:

stop
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Appendix: Acronyms

CMOS Complementary Metal-Oxide Semiconductor
CPU Central Processing Unit
CSP communicating sequential processes
DMA Direct Memory Access
DRAM Dynamic RAM
DSM Distributed Shared Memory
DSP Digital Signal Processor
EUV Extreme Ultra Violet
FPGA Field Programmable Gate Array
FPU Floating Point Unit
GPIO General Purpose Input Output
GPU Graphics Proocessing Unit
I/O Input and Output
IP Internet Protocol
MIMD Multiple-Instruction stream Multiple-Data stream
MIPS Million Instructions Per Second
MMU Memory Management Unit
µP Micro Processor
MPU Memory Protection Unit
NoRMA No Remote Memory Access
NUMA Non-Uniform Memory Access
PHY Physical Layer Circuitry
RAM Random Access Memory
ROM Read-Only Memory
SIMD Single-Instruction stream Multiple-Data stream
SISD Single-Instruction stream Single-Data stream
SMP Symmetric Multi Processing
SRAM Static RAM
TCP Transmission Control Protocol
TFTP Trivial File Transfer Protocol
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol
UTF Unicode Transformation Format
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
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